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BENDING TESTS OF LARGE-D- S T I m  CYLINDERS 

SUSCEPTIBLE TO GEKFZRAL INSTABIIXTY 

By Michael F. Card 

SUMMARY 

Seven ring-and-stringer s t i f fened,  c i r cu la r  cylinders were loaded t o  f a i l u r e  
i n  bending. A t  low loadings, portions of t h e  skin i n  each of t h e  cylinders 
buckled local ly;  t he  ove ra l l  load d is t r ibu t ion  i n  the  cylinders, however, could 
be predicted ana ly t ica l ly  up t o  f a i lu re .  
ders i s  believed t o  have been prec ip i ta ted  by general i n s t ab i l i t y .  Correlation 
between orthotropic buckling theory and experiment w a s  found t o  be f a i r l y  good, 
discrepancies being a t t r i bu ted  mainly t o  uncertaint ies  i n  two of  t he  ortho- 
t rop ic  s t i f fnesses .  Ef f ic ien t  weight-strength capabi l i t i es  of t he  t e s t  cylin- 
der configuration f o r  l i g h t l y  loaded missi le  o r  a i r c r a f t  applications a r e  
indicat  ed. 

Fai lure  of a l l  but one of t he  cylin- 

INTRODUCTION 

Ring-and-stringer s t i f fened  cylinders a r e  of ten used as a i r c r a f t  fuselages 
o r  missi le  in te rs tage  s t ructures  t o  carry bending and compression loads. Under 
these loading conditions and depending on the  individual geometry, such a s t ruc-  
t u r e  i s  prone t o  one of t w o  m a j o r  types of i n s t ab i l i t y :  
general i n s t ab i l i t y .  Panel i n s t a b i l i t y  i s  usually defined as buckling i n  a 
mode i n  which only the  skin and s t r ingers  between r ings pa r t i c ipa t e  i n  the  
buckling d is tor t ions  and thus the  rings have no radial deformation. General 
i n s t a b i l i t y  i s  defined a s  buckling i n  a mode i n  which the  rings a s  wel l  a s  t h e  
skin and s t r ingers  a re  involved i n  radial buckling d is tor t ions .  For ce r t a in  
combinations of cylinder geometry, t he  predicted i n s t a b i l i t y  loads f o r  each of 
the  two modes may be nearly ident ica l .  Cylinders whose geometry fa l l s  i n  t h i s  
category a re  of i n t e r e s t  f o r  t he  design of s t ruc tures  t h a t  a r e  e f f i c i en t  from a 
weight-strength standpoint. Thus, t he  a b i l i t y  t o  predict  t he  conditions under 
which each of these modes w i l l  occur i s  important i n  the  i n s t a b i l i t y  analysis  of 
t h i s  type of s h e l l  s t ructure .  

panel i n s t a b i l i t y  o r  

For s t i f fened  cylinders subject t o  compressive panel i n s t a b i l i t y ,  reason- 
able  correlat ion between ana ly t i ca l  and experimental results can be found i n  
references 1 and 2. Such correlat ion i s  not avai lable  f o r  general i n s t a b i l i t y .  
Although theo re t i ca l  s tudies  of general i n s t a b i l i t y  resu l t ing  from e i t h e r  com- 
pression o r  bending loads have appeared a t  various times i n  the  l i t e r a t u r e  (see, 
f o r  example, r e f s .  3 and 4) ,  no comprehensive experimental invest igat ions have 
been conducted since t h e  work of Hoff and associates  from 1943 t o  1948 (see, 



f o r  example, r e f .  5 ) .  Correlation between theory and experiment i n  the  la t te r  
invest igat ion required ce r t a in  empirical fac tors  which were based on cylinders 
of un rea l i s t i c  proportions i n  l i g h t  of present-day aeronautical  and aerospace 
applications.  The number and shape of s t r inge r  sections as wel l  as t h e  diameter 
of t he  t e s t  cylinders i n  t h e  study of reference 5 make extrapolation of t he  
results infeas ib le  for contemporary s h e l l  s t ructures .  

I n  order t o  provide experimental data on general  i n s t a b i l i t y  i n  cylinders 
of more modern proportions, a s e r i e s  of bending tests on seven 77-inch-diameter, 
c i r cu la r  cylinders,  s t i f fened  by both r ings and s t r inge r s  have been conducted 
a t  t he  Langley Research Center s t ruc tures  laboratory. The s t ruc tu ra l  param- 
eters varied were t h e  r ing  spacing, t he  s t r inge r  spacing, and the  r ing  depth. 
The cylinder r ing  sect ions were purposely made s m a l l  i n  order t h a t  the  s t ruc-  
tures might be suscept ible  t o  a general i n s t a b i l i t y  buckling mode. 

The general i n s t a b i l i t y  data obtained were compared with i n s t a b i l i t y  pre- 
dict ions based on or thotropic  cylinder theory. The predictions of t h e  ortho- 
t rop ic  s t i f fnes ses  necessary for the  i n s t a b i l i t y  calculations were necessar i ly  
approximate because t h e  geometry w a s  such t h a t  l o c a l  buckling of the  cylinder 
sk in  preceded ove ra l l  i n s t a b i l i t y .  I n  an e f f o r t  t o  define these s t i f fnesses ,  
ana ly t ica l  s tudies  of t h e  load d is t r ibu t ion  i n  t h e  cylinders as w e l l  as the  
sens i t i v i ty  of i n s t a b i l i t y  predictions t o  uncertaint ies  i n  cer ta in  w a l l  s t iff-  
nesses were performed. Conservative s t i f f n e s s  values were adopted t o  compare 
orthotropic i n s t a b i l i t y  theory with experiment. 

SYMBOLS 

cross-sectional area of s t r ingers ,  sq in .  

bending s t i f fnes ses  of orthotropic p l a t e  i n  longitudinal and circum- 
f e r e n t i a l  direct ions,  respectively,  in.-kips 

twist ing s t i f f n e s s  of orthotropic p l a t e ,  in.-kips 

Young's modulus, k s i  

extensional s t i f fnes ses  of orthotropic p l a t e  i n  longitudinal and c i r -  
cumferential direct ions,  respectively,  kips/in. 

shearing modulus, k s i  

in-plane shear s t i f f n e s s  of orthotropic p la te ,  kips/in. 

applied moment, in.-kips 

moment a t  f l a t - p l a t e  buckling stress, in.-kips 

moment a t  buckling (general o r  panel i n s t a b i l i t y ) ,  in .  -kips 



t 

t 
- 

compressive load pe r  inch i n  longitudinal direct ion,  kips/in. 

allowable compressive load per  inch i n  longitudinal direct ion,  kips/in. 

radius of cylinder t o  skin midplane, in .  

t es t - sec t ion  length, in .  

s t r i nge r  spacing, in .  

density of material ,  lb/cu in .  

depth of r ing,  in .  

r ing  spacing, in .  

r ing width, in .  (see f ig .  1) 

number of half-waves in to  which cylinder buckles i n  longitudinal and 
circumferential  direct ions,  respectively 

thickness of cylinder skin, in.  

cross-sectional area of s h e l l  per  inch of circumference expressed as 
an equivalent thickness, in .  

empirical correlat ion f ac to r  f o r  orthotropic cylinders ( r e f .  11) 

Poisson's r a t i o s  associated with bending of orthotropic p l a t e  i n  
longi tudinal  and circumferential  direct ions,  respectively 

Poisson's r a t i o  associated with extension of orthotropic p l a t e  i n  
longi tudinal  and circumferential  direct ions,  respectively 

s t r inge r  s t r e s s  i n  cylinder, ksi  

m a x i m u m  s t r inge r  s t r e s s  i n  cylinder, ksi  

calculated maximum s t r inge r  s t r e s s  i n  cylinder a t  measured Mpr, ks i  

f l a t -p l a t e  buckling stress, ks i  

edge stress i n  i n f i n i t e l y  long p la te ,  ks i  

circumferential  coordinate, deg 
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TEST SPECIMENS AND TEST PROCEDURES 

Specimens 

The tes t  specimens consisted of seven 77-inch-diameter cylinders, s t i f fened  
on t h e  outer  surface with extruded Z-section s t r inge r s  and on the  inner surface 
with s m a l l ,  formed hat-section rings.  I n  order t o  prevent end failures, two 
sturdy hat-section rings were used t o  s t i f f en  t h e  ends of each of t he  specimens. 
The rings were r iveted t o  the  cylinder skin whereas t h e  s t r inge r s  were spot- 
welded. The s t r inge r  and r ing  sections i n  each cylinder were iden t i ca l  except 
f o r  t he  r ing depth. The dimensions of  t he  s m a l l  r ings and s t r ingers  as wel l  as 
the  overa l l  dimensions of t he  individual cylinders a r e  given i n  f igure  1 and i n  
t ab le  I. Average values of t h e  s t r inge r  area and skin thicknesses a re  pre- 
sented; a l l  o ther  dimensions indicated a re  nominal. The cylinders have been 
divided in to  two groups d i f fe ren t ia ted  by cylinder r ing  depth a s  w e l l  as by 
stringer-spacing-skin-thickness r a t i o  b/ t .  The b / t  r a t i o s  for groups I and 
I1 a re  125 and 200, respectively,  and a r e  such t h a t  l o c a l  buckling of the  cylin- 
der skin occurred very ear ly  i n  t h e  loading his tory of each tes t  specimen. 

h 

The cylinders were constructed of  7075-T6 aluminum al loy.  Typical material 
propert ies  were used i n  reducing t h e  data: Young's modulus E w a s  assigned t h e  
value of 10,300 ks i ;  t h e  shearing modulus G, t he  value 4,000 ks i ;  and Poisson's 
ra t io ,  t he  value 0.32. 

Procedures 

The cylinders were loaded i n  bending through a loading frame with the  use 
of a hydraulic jack. A photograph of the  tes t  setup i s  shown i n  f igure  2. 
Effects of s t r ay  loads, f r i c t i o n a l  forces,  and weights of f ix tures ,  which a r e  
ordinar i ly  present i n  t e s t s  such as these,  were minimized insofar  as prac t i -  
cable with the  use of r o l l e r s  and counterbalancing weights a s  described i n  re f -  
erence 6. Each cylinder w a s  instrumented with several  resistance-type wire 
s t r a i n  gages. Two types of gages were used. Gages with a -inch-gage length 16 
were employed on the  cylinder skin t o  detect  l o c a l  buckling; gages with a 6-inch- 
gage length mounted on t h e  s t r inge r s  were used t o  detect  t he  overa l l  buckling 
of t he  cylinder wall and t o  ind ica te  s t r e s s  d i s t r ibu t ion  i n  the  cylinder. The 
6-inch gages were mounted i n  back-to-back p a i r s  and d is t r ibu ted  circumferen- 
t i a l l y  along t w o  longi tudinal  s t a t ions  a s  indicated i n  f igure  3 .  The s t r a ins  
from the  gages were recorded a t  a v i r tua l ly  continuous rate e i the r  on autographic 
s t r a i n  recorders o r  on the  Langley cent ra l  d i g i t a l  data recording system. For 
each specimen, both a l o c a l  buckling t e s t  a t  low loadings and a tes t  t o  f a i l u r e  
were conducted. The skin gages were recorded only during the  loca l  buckling 
t e s t .  
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TEST RESULTS 

Local Buckling 

I n  s p i t e  of t he  precautions taken with t h e  tes t  f ix tures ,  t he  s t r a i n  gages 
as well as v i sua l  observations indicated t h a t  t he  f i rs t  skin buckles did not 
occur a t  t he  locations expected. I n  f ac t ,  skin buckling i n  i so la ted  areas w a s  
observed on a l l  of t h e  group I1 cylinders a s  t he  ends of t he  cylinders were 
being bolted t o  the  f ix tures .  However, t he  strain-gage data indicated t h a t  
premature skin buckling had l i t t l e  e f fec t  on the  overa l l  s t r e s s  d i s t r ibu t ion  
i n  t h e  specimens a f t e r  a small bending load had been applied. For group I 
cylinders, buckling of t h e  skin w a s  not observed u n t i l  a bending moment had 
been applied. For both groups of cylinders, most of t he  skin buckling i n  the  
areas of high compressive s t r e s s  occurred a t  about 75 percent of the  load pre- 
dicted f o r  a curved p l a t e  with edge supports equivalent t o  tha t  of t h e  t e s t  
cylinders. 
(4.2 ks i  f o r  group I cylinders,  1.8 ks i  f o r  group I1 cyl inders) ,  t he  presence 
of  small s t ray  loads or bu i l t - i n  fabr icat ion s t resses  may have accounted f o r  
the  premature l o c a l  buckling. 

(See re f .  7 . )  Since the  predicted buckling s t r e s s  w a s  small 

Fai lure  Tests 

The applied moment a t  which f a i l u r e  occurred i s  given i n  t ab le  I. In a l l  
t he  t e s t s ,  overa l l  buckling w a s  accompanied by a catastrophic collapse of t h e  
cylinder wall. Observations of t he  buckling pa t te rn  a f t e r  f a i l u r e  indicated 
tha t  one o r  more of t h e  r ings were d is tor ted  i n  a l l  except one of the  cylinders 
tes ted.  Table I indicates  t h e  mode of buckling of each cylinder based on these 
observations. Figure 4 shows two of t he  cylinders a f t e r  f a i lu re .  The cylinder 
shown i n  f igure  4(a) i s  believed t o  have buckled i n  the  general i n s t a b i l i t y  
mode and i s  typ ica l  of most of  t he  cylinders. 
of  f a i l u r e  of  t he  only cylinder believed t o  have buckled i n  the  panel ins ta -  
b i l i t y  mode. 

Figure 4(b) indicates  the  mode 

Loading History 

The loading h i s to r i e s  of t h e  cylinders a r e  indicated i n  f igures  5 and 6. 
I n  f igure  5 ,  s t r e s ses  a t  various locations i n  the  compressive areas of each 
cylinder have been p lo t t ed  against  t he  circumferential  coordinate cp. Values 
a r e  shown f o r  two bending moments: &r the  moment a t  f a i lu re ,  and s r .  The 
c i r c l e s  and squares represent data obtained from t h e  measured values of s t r a i n  
a t  two longitudinal s t a t ions  A and B on the  cylinder. (See f i g .  3 . )  The 
values shown a r e  t h e  average of back-to-back gages on t h e  s t r inger  web. Indi-  
vidual  gages had a m a x i m u m  deviation of %' percent from the  average value em- 
ployed i n  constructing t h e  f igure.  

The curves shown i n  f igure  5 have been calculated by an i t e r a t i v e  procedure. 
Because some areas  of t h e  cylinder skin were buckled under the  applied 
bending moment, t h e  s t r e s s  d i s t r ibu t ion  i n  t h e  cylinder skin w a s  no longer 
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l inear .  
were employed. 
and a width of skin equal t o  t h e  s t r inge r  spacing. A s t r a i n  and the  corre- 
sponding stress 5 were specif ied i n  t h e  extreme compressive element; a d i s t r i -  
bution of s t r inge r  s t r e s ses  varying l inear ly  with depth w a s  assumed; and t h e  
corresponding axial load on each element w a s  computed. The e f fec t ive  width 
formula of reference 2 w a s  employed f o r  the estimation of the  load car r ied  by 
those elements with buckled skin. The l o c a l  buckling stress required by the  
formula of reference 2 w a s  obtained from reference 7 f o r  a f l a t  p l a t e  of geom- 
e t ry  similar t o  t h e  cylinder skin panels and e l a s t i c a l l y  res t ra ined by s t r ingers .  
By using these approximations, t h e  net  axial load on the  cylinder w a s  computed. 
I t e r a t ion  with various l i n e a r  stress d is t r ibu t ions  w a s  performed u n t i l  t he  axial 
load on the  cylinder w a s  negligibly small. With t h e  s t r e s s  d i s t r ibu t ion  neces- 
sary f o r  axial-force equilibrium, t h e  applied moment corresponding t o  the  spec- 
i f i e d  stress was computed by numerical integrat ion of t he  loads i n  the  cylinder 
elements . 

Approximate techniques t o  describe the  load car r ied  by the  buckled skin 
Each cylinder w a s  divided in to  elements defined by a s t r inge r  

It can be seen from f igure  5 t ha t  t h e  agreement between experiment and cal-  
culation i s  reasonably good f o r  most of t h e  cylinders except for cylinder 4, 
group 11. (See f i g .  5 (g ) . )  Although agreement f o r  t h i s  cylinder i s  only fa i r  
a t  lower values of applied moment M, it seems t o  improve somewhat with in- 
creased loading. The curve f o r  M = %&- has been included i n  f igure 5(g)  t o  

4 
ind ica te  this trend. 

I n  f igure  6, t h e  applied moment has been p lo t t ed  against  t he  m a x i m u m  com- 
pressive stress i n  the  cylinder. The c i r c l e s  are the  average of the  data 
obtained from t h e  most highly compressed s t r inge r  i n  each cylinder. A s  indi-  
cated i n  f igure  5, t h i s  s t r inge r  w a s  located a t  or very near t h e  geometric 
extreme compressive f ibe r .  From f igures  5 and 6, it can be seen tha t  a l l  meas- 
ured s t r a ins  i n  t h e  s t r ingers  corresponded t o  e l a s t i c  s t r e s ses  i n  the  material. 

The curves of f igure  6 were obtained from the  previously mentioned itera- 
t i v e  procedure. The lower t i c k  marks on each of t he  curves indicate  the  
moment corresponding t o  the  s t r e s s  computed f o r  buckling of f l a t  skin 
panels of t he  cylinder geometry. The upper t i c k  mark indicates  t he  m a x i m u m  
moment sr tha t  t he  cylinder car r ied  before collapse. The r a t i o  of s t r e s ses  
corresponding t o  these moments i s  given i n  t ab le  I. It can be seen from both 
f igures  5 and 6 t h a t  t h e  ove ra l l  loading his tory of t h e  cylinders w a s  predicted 
ana ly t ica l ly  with reasonable accuracy i n  s p i t e  of  t h e  somewhat random and pre- 
mature skin buckling mentioned ea r l i e r .  

INSTABILITY ANALYSIS 

A common approach t o  t h e  buckling analysis  of ring-and-stringer s t i f fened  
she l l s  i s  t o  consider the s h e l l  w a l l  a s  an orthotropic material. To form t h e  
mechanical propert ies  of orthotropic she l l s  i n  which the  s t i f f en ing  m e m b e r s  are 
rather  closely spaced, t h e  d iscre te  s t i f fnes ses  of individual elements can be 
ana ly t ica l ly  "smearedtt i n to  e f fec t ive  w a l l  s t i f fnesses .  The la t te r  are then 
inser ted in to  an orthotropic s h e l l  buckling equation i n  order t o  predict  t h e  

6 
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i n s t a b i l i t y  loads. For the case of t he  ring-and-stringer s t i f fened  cylinder i n  
which t h e  skin i s  severely buckled, t he  w a l l  s t i f fnes ses  are not only functions 
of geometry but  are also functions of the  state of stress of t he  cylinder skin. 
These stiffnesses are d i f f i c u l t  t o  estimate ana ly t ica l ly  and, therefore,  t he  
possible range of their magnitudes and t h e i r  e f f ec t  on t h e  buckling load 
deserves consideration. 

General I n s t a b i l i t y  

To predict  general i n s t a b i l i t y  loads f o r  the  t e s t  cylinders, the  ortho- 
t r o p i c  compressive s t a b i l i t y  equation of reference 4 w a s  adopted. 
employed w a s  

The equation 

1 + 

where the  transverse shear s t i f f n e s s  considered i n  the  s t a b i l i t y  equation of 
reference 4 has been assumed t o  be i n f i n i t e l y  large.  
simply supported cylinders. It i s  also assumed t o  be va l id  f o r  cylinders with 
other edge support which are moderately long, t ha t  i s ,  long enough so tha t  t he  
axial buckle wave length i s  not influenced by boundary conditions. The recip- 
roca l  re la t ions  of reference 4 

Equation (1) i s  va l id  fo r  

1 'IxDy = C'ysc 

were employed so t h a t  equation (1) i s  a function of e ight  s t i f fnesses .  

The buckling solution of equation (1) requires minimization of t he  compres- 
s ive load per  inch % with respect t o  in t eg ra l  values of m and n, the  number 
of half-waves of t h e  buckle pa t te rn  i n  the  longi tudinal  and circumferential  
direct ions,  respectively.  I n  addition, f o r  those s t i f fnes ses  which a re  func- 
t i o n s  of t h e  state of stress of t h e  buckled cylinder skin, compatibility between 
the  buckling stress and t h e  s t i f f n e s s  assumed i n  finding t h a t  stress must be 
sa t i s f i ed .  To fu l f i l l  these requirements, t he  general i n s t a b i l i t y  computations 
presented i n  this report  were performed by an i t e r a t i o n  procedure on a d i g i t a l  
computer. I n  t h e  computations, t h e  ana ly t ica l  loading h i s to ry  curves of f ig -  
ure  6 were employed t o  convert t he  buckling load per inch 
moment. 

Nx t o  an applied 
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For i n s t a b i l i t y  modes obtained from equation (1) t o  be considered as gen- 
eral i n s t a b i l i t y  modes, the  a x i a l  half  wave length obtained after minimization 
should include at  l e a s t  one o r  more rings.  The com- 
putations made f o r  t he  cylinders indicated t h a t  t h i s  condition w a s  f u l f i l l e d  i n  
every case. Also, the a x i a l  half  wave length must be s m a l l  compared with the  
length a i n  equation (1). It w a s  necessary t o  define the  length a i n  terms 
of the  geometry of the  cylinders. 
two sturdy hat-section r ings s t i f f en ing  the ends of the cylinder tes t  sect ion 
and i s  indicated i n  f igure  4(a). By using t h i s  length f o r  a l l  computations, it 
w a s  found t h a t  the  minimum buckling load obtained w a s  insens i t ive  t o  var ia t ions  
i n  the  number of longi tudinal  half-waves m, so that the cylinders, f o r  ana- 
l y t i c a l  purposes, could be considered as moderately long. Thus equation (1) 
would appear t o  be va l id  as a c r i t e r ion  f o r  general  i n s t a b i l i t y  of t he  t e s t  
cylinders . 

(See f i g .  14  of ref. 3 . )  

The length w a s  taken as t h a t  measured between 

St i f fnesses  f o r  B a s e  Calculation 

The difficulties of estimating t h e  s t i f fnes ses  appearing i n  equation (1) 
f o r  s t i f fened  cylinders w i t h  buckled skin have already been mentioned. 
s t i f fnes ses  such as the  longitudinal bending and extensional s t i f fnes ses  4( 
and E, appear t o  be reasonably well  defined. The correlat ion achieved between 
calculat ion and experiment i n  predicting t h e  loading h i s t o r i e s  of the  t e s t  cyl- 
inders ( f ig s .  5 and 6) indicate  t h a t  E, f o r  t he  tes t  cylinder configuration 
can be predicted accurately. The f a c t  t h a t  can be derived from the same 
ef fec t ive  width formula used i n  determining suggests that it a l so  can be 
estimated with reasonable accuracy. The other s t i f fnes ses  i n  equation (1) are 
less well  defined and only approximate predictions of these s t i f fnes ses  can be 
made at  best .  

Certain 

E, 

To predict  general i n s t a b i l i t y  f o r  t h e  t e s t  cylinders of this report ,  a 
base calculation, i n  which generally conservative values of orthotropic s t i f f -  
nesses were defined, w a s  adopted f o r  use i n  equation (1). 
nesses used i n  t h e  calculat ion were as follows: 

The values of s t i f f -  

t ( a )  Poisson’s r a t i o s  px, px, py, and p; were set equal t o  zero. 

(b)  The longi tudinal  extensional and bending s t i f fnes ses  E, and % 
were taken from reference 2 as 

and 

E I S  D, = - 
b 



where As i s  the  area of the  s t r inger  section; Is i s  the  moment of i n e r t i a  of 
the s t r inger  section about i t s  center of gravity;  ys, the  distance between the  
center of gravi ty  of the  s t r inger  and the middle plane - of the cylinder skin; 
and ps, the  radius of gyration of the  s t r inger .  E,,, and Etan are  the  
secant and tangent moduli of the  buckled skin, respectively,  and can be obtained 
from equations (A2) and (A3) of reference 2. The reference equations a re  based 
on the e f fec t ive  width formula used i n  predicting t h e  loading h i s t o r i e s  f o r  the 
t e s t  cylinders . 

(c )  The twist ing s t i f f n e s s  Dxy w a s  computed with the  expression 

where GJs i s  the  twist ing s t i f f n e s s  of t he  s t r inger  section and G J r  i s  the 
twist ing s t i f fnes s  of the closed section formed by the  r ing  and skin between 
r ing  r ive t s .  

(d) The circumferential  extensional s t i f f n e s s  Ey w a s  obtained by con- 
sidering the contribution t o  the  s t i f f n e s s  by the  buckled skin t o  be equal t o  
t h a t  for %, that i s ,  

where + i s  the  cross-sectional a rea  of the ring. 

(e) The circumferential  bending s t i f f n e s s  Dy w a s  taken t o  be the value 
(see computed f o r  the r ing  and a portion of skin equal t o  the  r ing  width 

f ig .  l(b)) by employing the expression 
2, 

=Y 

where i s  the  moment of i n e r t i a  of the r ing  section about i t s  center of 
gravity;  yr, the distance between t h e  center of grav i ty  of the r ing  and the  
middle plane of the  cylinder skin; and 

1, 

pr, the  radius of gyration of the  ring. 

( f )  For the shearing s t i f f n e s s  Gxy, the  value given i n  reference 8 f o r  a 
f la t  s t r i p  w a s  adopted. I n  f igure  7, the  e f f ec t ive  shear s t i f f n e s s  taken from 
the  reference has been p lo t t ed  against  the edge s t r e s s  r a t i o  r&/Crbu. 
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To compute the  base general i n s t a b i l i t y  loads, the  s t i f fnesses  defined by 
the base calculation were inser ted i n t o  equation (1) and the  appropriate mini- 
mization performed. 

Comparison of Analysis With Ekperiment 

I n  f igure 8, a comparison of calculated r e s u l t s  i s  made with the cylinder 

The general i n s t a b i l i t y  curves shown a r e  the 
test data. The c i r c l e s  on the  f igure represent the  bending moment at f a i lu re  
f o r  t he  two groups of cylinders. 
r e su l t  of employing equation (1) with the  s t i f fnesses  defined i n  the base calcu- 
l a t i o n  mentioned previously. The calculations a re  about 10 percent conservative 
f o r  the group I cylinders and 20 t o  30 percent conservative f o r  group 11. 
experimental t r ends  are predicted reasonably w e l l .  

The 

Figure 8 gives no indication of the  e f f ec t s  of the par t icu lar  choice of 
s t i f fnes s  parameters i n  the base calculation. 
general i n s t a b i l i t y  predictions t o  the choice of cer ta in  s t i f fnes s  parameters 
was undertaken, however, and i s  presented i n  the  appendix. The essent ia l  r e s u l t s  
of t h i s  study were t h a t  the general i n s t a b i l i t y  curves shown i n  figure 8 could 
be affected considerably by the  magnitudes of the  circumferential bending st iff-  
ness Dy as w e l l  as the  shearing s t i f fnes s  Gxy. I n  the  base calculation, these 
s t i f fnesses  a re  estimated conservatively; hence, the curves shown i n  figure 8 
might be expected t o  l i e  below the data. 

A study of the sens i t i v i ty  of the 

The suscept ib i l i ty  of the t e s t  cylinders t o  panel i n s t a b i l i t y  i s  a l so  indi-  
cated i n  f igure 8. 
t i on  ( 3 )  of  reference 2. 
cylinders f a l l  i n t o  the so-called "short" cylinder range so tha t  some estimate 
of the end f i x i t y  provided by the cylinder rings i s  required. The curve shown 
i n  the f igure w a s  computed f o r  the group I1 cylinders with an assumed value of 
2.0 f o r  the  column f i x i t y  coeff ic ient  of equation ( 3 ) .  
the  curve shown would approximate the experimental buckling load obtained f o r  
cylinder 4, group 11. I n  addition t o  being the longest cylinder tes ted  (and 
hence the most susceptible t o  panel i n s t ab i l i t y ) ,  this cylinder was the only 
one i n  which the rings appeared t o  have no r ad ia l  deformation. 
The curve indicates  t h a t  the  other cylinders i n  the group, by v i r tue  of t h e i r  
shorter lengths, should have buckled i n  the  general mode rather than i n  the 
panel i n s t a b i l i t y  mode. 
t o  panel i n s t ab i l i t y .  
coefficient (1.0) i n  equation ( 3 )  gives loads much higher than t h a t  required 
f o r  general i n s t a b i l i t y  so tha t  none of the cylinders i n  t h i s  group are  suscep- 
t i b l e  t o  panel i n s t ab i l i t y .  

The panel i n s t a b i l i t y  curve shown w a s  computed by equa- 
With respect t o  panel i n s t ab i l i t y ,  all of the test 

The value w a s  chosen so 

(See f ig .  4(b).) 

Thus only one cylinder of t h i s  group seems susceptible 
For group I, the  use of even the minimum column f i x i t y  

DISCUSSION 

General I n s t a b i l i t y  Predictions 

It i s  evident t h a t  the  preciseness of general i n s t a b i l i t y  predictions f o r  
the test  cylinders of t h i s  report  i s  hampered by the  approximate nature of t he  
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s t i f fnes ses  that were inser ted i n  the  s t a b i l i t y  equation. The s t i f fnes s  study 
contained i n  the  appendix ind ica tes  that the  lack of agreement between ortho- 
t rop ic  theory and experiment of f igure  8 i s  probably not associated with the  
use of uncertain values f o r  t h e  s t i f fnes ses  px, p i ,  h, Ex, %y, and Ey. 
These s t i f fnes ses  are e i t h e r  reasonably well  defined ana ly t ica l ly ,  as i n  the  
case of E, and &, or  else t h e i r  uncertaint ies  have l i t t l e  e f f ec t  on the  mag- 
nitude of the  general  i n s t a b i l i t y  load. Hence, the  s t i f fnes ses  Dy and Gxy 
remain as a probable cause of the  discrepancy between theory and experiment. 

It should be noted that the  group I cylinders buckled a t  a s t r e s s  r a t i o  - 
crcr/c7bu of about ha l f  t h a t  of the group I1 cylinders. (See t ab le  I.) There- 
fore ,  i f  Dy and Gxy are indeed the cause of the discrepancy, the values of 
these s t i f fnes ses  would have t o  be increased more f o r  highly buckled skin than 
f o r  moderately buckled skin t o  br ing predictions and experiment i n to  agreement. 
The p o s s i b i l i t y  of these e f f e c t s  has been suggested ( r e f s .  9 and 10) but  it i s  
apparent t ha t  more substantiated,  quant i ta t ive s tudies  of these s t i f fnes ses  a re  
needed. 

A fu r the r  cause of discrepancy between theory and experiment might be 
a t t r i bu ted  t o  the customary lack  of agreement between small-deflection buckling 
theory and experiment. A corre la t ion  f ac to r  i s  usual ly  applied t o  buckling com- 
putations t o  br ing them in to  b e t t e r  agreement with experiment. For orthotropic 
cylinders there  i s  a lack  of experimental information upon which t o  base this 
empirical parameter. Reference 11, however, has suggested a correlat ion fac- 
t o r  7 
T h i s  fac tor ,  i f  applied t o  t h e  present t e s t s  indicates  t h a t  the  group I1 base 
calculat ion would be changed by at most 4 percent (cylinder 4);  the group I 
calculat ion would be e s sen t i a l ly  unaffected. It appears, then, t h a t  on the 
bas i s  of the  l imited cylinder data  avai lable ,  reasonable correlat ion between 
orthotropic small-deflection buckling theory and experiment would be expected 
f o r  the t e s t  cylinders provided the  cylinder w a l l  s t i f fnes ses  were known accu- 
ra te ly .  The lack of agreement between the t e s t  data  and the  buckling computa- 
t i ons  obtained herein probably does not stem from the  use of s m a l l  def lect ion 
buckling theory but ra ther  from t h e  uncer ta in t ies  i n  individual orthotropic 
s t i f fnesses .  

which has been applied t o  a l imited amount of orthotropic cylinder data. 

Another e f f ec t ,  which has not been considered i n  the theo re t i ca l  calcula- 
t i o n s  f o r  general i n s t a b i l i t y  presented i s  t h a t  of the asymmetry (one-sided 
s t i f fen ing)  of the w a l l s  of the  t e s t  cylinders.  
s tudies  of asymmetric e f f e c t s  on general  i n s t a b i l i t y  predict ions have been made 
f o r  or thotropic  she l l s  loaded by compression or  external  pressure. There i s  
some indicat ion i n  these references t h a t ,  fo r  s t i f fened cylinders with s m a l l  
r a t i o s  of radius t o  thickness, asymmetry can have a subs tan t ia l  e f f e c t  on ins ta -  
b i l i t y  predictions.  Attempts t o  use the  r e s u l t s  of reference 3 t o  predict  gen- 
e r a l  i n s t a b i l i t y  f o r  the  t e s t  cylinders,  however, indicate  t h a t  asymmetric 
e f f e c t s  a r e  negl igible  f o r  the  cylinders because of t h e i r  l a rge  r a d i i .  

In references 3 ,  12, and 13, 
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Weight-Strength Considerations 

The test cylinder design i s  somewhat unusual i n  t h a t ,  unlike conventional 
aeronautical  designs, t h e  cylinder w a l l s  are s t i f fened  by extremely light rings.  
It seems desirable ,  therefore,  t o  determine t h e  r e l a t i v e  s t ruc tu ra l  e f f ic iency  
of the  cylinder configuration. I n  f igure  9, a comparison i s  made between t h e  
r e l a t ive  e f f i c i enc ie s  f o r  four types of cylinder construction and the  test  cyl- 
inders. 
ence 11. The c i r c l e s  and squares shown correspond t o  the  da ta  obtained from 
the  cylinders of this report .  The parameter Nxo/R has been calculated by con- 

ver t ing the  m a x i m u m  cylinder stresses obtained from the curves of f igure  6 t o  a 
load per inch of circumference by employing t h e  e f fec t ive  width formula of ref- 
erence 2. The weights of the  cylinder t e s t  section including the s t i f fen ing  
r ings were incorporated in to  t h e  parameter 

The curves shown on the  f igure  were obtained from f igure  14 of refer- 

dg/R. 

Since w e i g h t  optimization w a s  not a primary consideration i n  designing the  
tes t  cylinders, the  data  shown i n  f igure  9 ind ica te  only t h e  approximate posi- 
t i o n  of the  ring-and-stringer s t i f fened  cylinder with buckled skin i n  comparison 
with other types of s t i f fening.  The figure indicates  t h a t  t h i s  type of construc- 
t i o n  i s  more e f f i c i e n t  fo r  the loading index range 0 . 0 1 t o  0.03 k s i  than e i t h e r  
the waffle-like construction o r  longi tudinal ly  s t i f fened  construction having 
unbuckled skin. 
included i n  the weight-strength analysis  of r e f .  11) are usual ly  added t o  meet 
loading conditions other than compression. For the  ring-and-stringer s t i f fened 
cylinder, these r ings a re  an inherent pa r t  of the  s t i f fening;  hence, the  weight 
comparison between it and t h e  other  types of cylinder construction (including 
the  sandwich type) should be even more favorable f o r  the  ring-and-stringer 
s t i f fened cylinder than t h a t  shown on the  f igure.  

For long cy l indr ica l  s t ructures ,  intermediate r ings (not 

CONCLUDING REMARKS 

Results of bending tes ts  on seven, large-diameter, s t i f fened  cylinders 
have been presented and discussed. Although t h e  cylinder skin buckled i n  areas 
of high compression during the  tests, t he  load d is t r ibu t ion  i n  each of the  t e s t  
cylinders w a s  predicted ana ly t i ca l ly  with reasonable accuracy up t o  overa l l  
i n s t a b i l i t y .  
by using orthotropic theory from the  standpoint of both general and panel ins ta -  
b i l i t y .  On the bas i s  of v i sua l  observation and analysis  a l l  but  one of t he  
tes t  cylinders are believed t o  have f a i l e d  i n  the  general i n s t a b i l i t y  mode. 
The general i n s t a b i l i t y  analysis  i s  i n  f a i r l y  good agreement with the  data. 
The discrepancies between analysis  and experiment a re  a t t r i bu ted  t o  a lack of 
precise  knowledge of magnitudes of the  orthotropic s t i f fnes ses  9. and Gxy. 
Weight-strength considerations of t h e  cylinders suggest t h a t  ring-and-stringer 
s t i f fened s h e l l s  i n  which the  cylinder skin i s  permitted t o  buckle i s  a ra ther  
e f f i c i en t  design f o r  l i g h t l y  loaded s t ructures .  

An attempt w a s  made t o  analyze the  overa l l  i n s t a b i l i t y  behavior 

Langley Research Center, 
National Aeronautics and Space AdministratSon, 

Langley Station, Hampton, Va., December 10, 1963. 
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SENSITIVITY O F  GENERAL INSTABILITY PREDICTIONS 

TO ORTHOTROPIC STIFFNESSES 

Because the  magnitudes of cer ta in  s t i f fnesses  were computed by very approx- 
i m a t e  formulas, the base calculat ion employed f o r  general i n s t a b i l i t y  predic- 
t i o n s  has a cer ta in  a rb i t r a r ines s  i n  i t s  def ini t ion.  It would seem appropriate, 
therefore ,  t o  invest igate  the individual s t i f fnes ses  i n  the s t a b i l i t y  equation 
t o  estimate the  e f f e c t s  of uncer ta in t ies  i n  s t i f f n e s s  magnitudes on the  ins ta -  
b i l i t y  predictions.  

I n  the  following section, each of the  s t i f fnes ses  appearing i n  equation (1) 
i s  discussed and, where possible,  an attempt i s  made t o  j u s t i f y  the expressions 
employed f o r  t he  pa r t i cu la r  s t i f f n e s s  i n  the  base calculation. For estimating 
the  magnitudes of cer ta in  s t i f fnes ses  i n  equation (l), however, there  are no 
substantiated ana ly t ica l  techniques available.  To study the  e f f ec t s  of uncer- 
t a i n t i e s  i n  these s t i f fnesses ,  addi t ional  i n s t a b i l i t y  calculat ions using equa- 
t i o n  (1) were performed f o r  the  tes t  cylinders. 
made with the  method of computing the  spec i f ic  s t i f f n e s s  i n  question varied from 
tha t  employed i n  the  base calculation. The differences i n  computed i n s t a b i l i t y  
loads between these calculat ions and those of the  base calculat ion were then 
used as a c r i t e r ion  t o  determine the  sens i t i v i ty  of general i n s t a b i l i t y  predic- 
t i o n s  t o  uncertaint ies  i n  magnitude of the s t i f fnes ses  considered. 

I n s t a b i l i t y  predictions were 

Orthot ropic  St i f  fne sse s 

1 
PXI FX, Py7 and p i . -  To determine the  appropriate value of px and p i  

- .  

f o r  a cylinder with severely buckled skin, it i s  necessary t o  invest igate  the  
postbuckling behavior of curved p l a t e s  loaded i n  compression. Reference 2 has 
suggested t h a t  the behavior of curved panels i n  cylinders may be approximated 
by f l a t -p l a t e  postbuckling theory i n  the  advanced stages of postbuckling. Fig- 
ure 10 indicates  results f o r  
ence 9. A t  l a rge  values of the  edge s t r e s s  r a t i o  ue/ubu, 1.4 appears t o  be 
s m a l l  compared with unity.  
These s tudies  suggest that pi and px can probably be taken as zero without 
introducing large e r ro r s  i n  the s t a b i l i t y  equation; p i  and py then are a l so  
zero from equation (2) .  Thus, the  use of zero f o r  p i  and px i n  the  base 
calculation would seem t o  be reasonable. 

p; taken from the f l a t -p l a t e  study of refer- 

A s i m i l a r  r e s u l t  can be obtained from reference 14. 

Dx and Ex. - The results of reference 2 indicate  that an adequate knowl- 
edge of these s t i f fnes ses  e x i s t s  f o r  t he  longi tudinal ly  s t i f fened  cylinders 
with buckled skin considered therein.  The application of the  e f fec t ive  width 
formula of t he  reference t o  the  present t e s t s  of ring-and-stringer s t i f fened  
cylinders gives reasonable correlat ion between calculat ion and experiment f o r  
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t h e  loading h i s t o r i e s  of t he  t e s t  cylinders.  (See f ig s .  5 and 6.) This result 
implies that both D, and E& a re  known w i t h  suf f ic ien t  accuracy f o r  the  t e s t  
cylinders . 

xy.- There are no ana ly t i ca l  procedures avai lable  f o r  obtaining t h e  - 
twis t ing  s t i f f n e s s  xY f o r  longi tudinal ly  and circumferentially s t i f fened  
cyl inders  with buckled sheet. However, when Dxy w a s  taken t o  be zero, the  
calculated moment at  buckling f o r  the  test  cylinders w a s  found t o  decrease only 
from 5 t o  10 percent from t h a t  of the base calculation. 
for t h e  test  cylinders,  uncer ta in t ies  i n  t h i s  s t i f f n e s s  had l i t t l e  e f f e c t  on 
cor re la t ion  between or thotropic  analysis  and experiment. 

T h i s  f a c t  suggests t h a t  

Ey and %.- L i t t l e  ana ly t ica l  information i s  avai lable  f o r  predict ing 
e i t h e r  of these s t i f fnesses .  Ey 
alone, a computation w a s  made i n  which the  contribution of the  buckled skin w a s  
neglected. Because no appreciable change i n  t h e  predicted buckling load w a s  
observed, general i n s t a b i l i t y  buckling predict ions seem insens i t ive  t o  uncer- 
t a i n t i e s  i n  Ey alone. 

To consider t he  e f f e c t  of uncer ta in t ies  i n  

I n  order t o  estimate Ey and Dy f o r  cylinders with buckled skin panels, 
a knowledge of the  circumferential  s t i f f n e s s  of a buckled, cy l indr ica l  p l a t e  i s  
required. Reference 14 attempts t o  predict  the  transverse s t i f f n e s s  of buckled 
f la t  p l a t e s  and represents the  only avai lable  source f o r  estimating this s t i f f -  
ness. To apply the r e s u l t s  of the reference t o  estimations of Ey and Dy f o r  
t he  t e s t  cylinders,  t he  secant and tangent moduli concept (based on f l a t -p l a t e  
behavior) that w a s  used i n  determining skin contributions f o r  
(ref. 2) w a s  adopted. 
moduli i s  i n f i n i t e s i m d l y  s m a l l ,  the  secant and tangent moduli were both taken 
as equivalent t o  t h e  value given i n  reference 14 f o r  extensional s t i f f n e s s  i n  
the  transverse d i rec t ion  of t h e  buckled p la te .  Formulas similar t o  those used 
i n  the  base calculat ion f o r  t he  longitudinal extensional and bending s t i f fnesses  
were then used t o  compute Ey and Dy. The difference between the dashed and 
so l id  curves of f igure  11(a) indicates  the e f f e c t  of applying the  r e s u l t s  of 
reference 14 i n  computing % and %. It can be seen t h a t  f o r  both group I 
and group I1 cylinders,  a m a x i m u m  increase of about 10 percent over the  base 
calculat ion buckling load w a s  obtained. 

and I& 
Because the appropriate loading t o  obtain t h e  transverse 

I n  contrast  t o  t h i s  consideration, t h e  suggestion has been made i n  re fer -  
ence 10 t h a t  a corrugation e f f ec t  of the buckled skin panels may even increase 
t h e i r  contribution t o  9. above the  unbuckled skin contribution. The dash-dot 
curve of f igure  l l ( a )  ind ica tes  the e f f e c t  of a var ia t ion  from the  base calcu- 
l a t i o n  i n  which % w a s  computed by considering the  skin as unbuckled. The 
e f f e c t  can be seen t o  be about the same as t h a t  obtained by employing re fer -  
ence 14. This calculat ion i s  not intended t o  set limits on % but merely t o  
i l l u s t r a t e  t he  s e n s i t i v i t y  of buckling t o  changes i n  
ges t s  t h a t  wide var ia t ions  i n  
computations on cylinders of the proportions considered i n  t h i s  report .  

Dy. "he calculat ion sug- 

9. could influence the  accuracy of buckling 



&.- The ef fec t ive  shear s t i f f n e s s  of buckled sheet has long been recog- 
nized as an important s t ruc tu ra l  parameter i n  predicting general i n s t a b i l i t y .  
(See ref. 3. )  Unfortunately, t heo re t i ca l  s tudies  of t h i s  problem have resul ted 
i n  var ia t ions i n  the proposed s t i f f n e s s  of as much as 100 percent. 
there  i s  disagreement as t o  the  t rend i n  magnitude of the s t i f f n e s s  as the load 
i n  the  buckled p l a t e  i s  increased. 
erences 8 and 9.) 

I n  f a c t ,  

(Compare, f o r  example, the r e s u l t s  of re f -  

Figure U ( b )  ind ica tes  the  e f f ec t  of var ia t ions i n  Gxy on the  i n s t a b i l i t y  
load. The dash-dot curve shows the  e f f e c t  of increasing the  base calculat ion 
shearing s t i f f n e s s  by 100 percent. The dashed curve on the  f igu re  indicates  t he  
e f f e c t  of employing reference 9 i n  computing the  shearing s t i f fnes s .  
putat ions show tha t ,  because of the ana ly t ic  discrepancies i n  the proposed 
s t i f fnes s ,  buckling predict ions can be very sens i t ive  t o  the  choice of this 
parameter. A s  i n  t he  case of the circumferential  s t i f fnesses ,  no defined l i m i t s  
can be establ ished on the  shearing s t i f f n e s s  u n t i l  sui table  experimental evi-  
dence of the  t r u e  s t i f f n e s s  behavior i s  obtained. 
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uCr corresponds t o  value read from analy t ica l  curves of f igure  6. 
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( a )  Cylinder w a l l .  

h 

r i v e t  

(b)  Ring d e t a i l .  ( c )  S t r inger  d e t a i l .  

Figure 1.- Dimensions of s t i f f e n i n g  elements of t e s t  cyl inders .  

L-60-6548 

Figure 2.- General view of t e s t  setup showing a 77-inch-diameter cyl inder  t o  be t e s t e d  i n  bending. 
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(b) Cylinder 4, group 11. 

Figure 3.- Locations of 6-inch strain gages. 

(a) Cylinder 1;. group I; general instability. 

Figure 4.- Failure of test cylinders. L-61-1356 

I. I ---_-- 



I 

50 

4 0  

30  

CT, k s i  

2 0  

I O -  

(b )  Cylinder 4; group 11; panel  i n s t a b i l i t y .  

Figure 4.- Concluded. 
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(a) Cylinder 1; group I. 
Figure 5.- S t r i n g e r  stress d i s t r i b u t i o n  i n  t e s t  cy l inders .  
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(b) Cylinder 2; group I. 
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(c) Cylinder 3; group I. 

Figure 5.- Continued. 
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Figure 5.- Continued. 
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Figure 5.- Concluded. 
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( a )  Group I. 

Figure 6.- Maximum stress i n  t e s t  cy l inde r s  due t o  appl ied  load. 
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Figure 6. - Concluded. 
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Figure 7.- Effec t ive  shearing s t i f f n e s s  of a buckled f la t  s t r i p .  (Data obtained from r e f .  8.) 
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Figure 8.- Comparison of ana lys i s  and experiment f o r  general  and panel i n s t a b i l i t y  
buckling of t e s t  cyl inders .  
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Figure 9.- Rela t ive  s t r u c t u r a l  e f f i c i e n c y  of test cy l inders .  
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Figure 10.- Apparent value of Poisson 's  r a t i o  for buckled, i n f i n i t e l y  long, f l a t  p l a t e .  
(Data obtained from r e f .  9.) 
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Figure 11.- Effec t  of s t i f f n e s s  v a r i a t i o n s  on t h e  predicted general  i n s t a b i l i t y  
buckling loads for  t e s t  cyl inders .  
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